模試の直しは、正答率の低い問題をしっかり取り組む

以下のケースは模試を受けたとき、とてもよくあることだと思います。

  1. 模試を受ける
  2. 成績が判明する
  3. 正答率の高い問題も間違えている
  4. それが正解ならば、偏差値が5くらい上がる
  5. その正答率の高い問題をもう1度解いてみる
  6. 解ける
  7. これで今回のテストで判明された弱点は、一応克服できたとほっとする

このような姿勢が意味が無いとまではいいませんが、効果はあまり高くありません。

簡単にできる問題を正解にする方がコスパがいいという感覚だと思いますが、大切なことは、コスパではなく学力向上です。

 

正答率が高い問題というのは、簡単なわけです。

まだ未学習でできなかったということはありますが、まるで身についていないからできなかったということは少ないと思います。

理由は正答率が高い簡単な問題だからです。

ちょっとした勘違いや迷いで、解ける力はあるけど、なぜか解けなかったということが多いと思います。

そういう問題は、冷静に取り組んだり、ちょっと解説を見たら、すぐに解き方が分かって解けます。

このようにすぐに解ける問題を解いて、力がつくのでしょうか?

 

正答率が70%くらいの問題を間違えまくって、逆に正答率20%くらいの問題が正解が多いなんてことは、まず目にしません。

正答率70%くらいの問題が数問間違えていたとしても、正答率が低い問題は、「だいたい○%以下からはほとんどできていない」となっているはずです。

下の表は架空の受験生です。

各正答率になった問題が3問ずつあるとして、どのくらいあっているかを表にしたものです。

正答率 90% 80% 70% 60% 50% 40% 30% 20% 10%
正誤 3/3 2/3 1/3 3/3 2/3 1/3 0/3 0/3 0/3

 

これを見ると、80%の問題を1問、70%の問題を2問間違えていて、結局、12/27で5割取れませんでした。

「なんでこの3問を間違えたの!」という言葉が出てきそうです。

実際は正答率が高い問題の方が多いので、このような正誤分布になることはありませんが、もし高い正答率で間違えた問題が3問あっていたら、15/27になります。

「この3問を解けるか確認しよう!」という気持ちになるのも分かりますが、確認したら、できる可能性は高いですし、できなかったとしても、この機会にやり直さなくてもいつの間にか正解になる問題です。

放置するのは気持ち良くないので、軽く確認する程度で十分です。

40%や30%の問題をできるようにしていくことの方が大切です。

 

今回、間違えた問題だけを解き直しても、次回から40%や30%のレベルの問題ができるようになるわけではありません。

その単元の代表的な問題を解いてみて、それができることを確認してから、今回の問題を見ます。

典型題と、正答率が低い難度の高い問題を組み合わせてこそ、いろいろなことが見えてきます。

 

どの難易度の問題から正解数が激減するのかを確認して、例えば表のように40%からほとんど正解になっていないとしたら、40%と30%の問題をしっかり取り組むようにすると良いと思います。

全部直そうとすると学力を上げようとする意識が薄まって、解き直して「ハイ、終わり!」となりがちです。

直す問題を絞ることによって、テストの問題以外とテストの問題を組み直すような質の高い学習になり、効果が出ると思います。

TOP