- 2021年11月15日
4年生のとき以来の容積です。
入試によく出るという学校も女子中を中心に結構あります。
興味のある方はこちらにどうぞ
第82話:容積②の概要
82・1
棒を入れる問題です。
水の体積が分かる問題は、まず水の体積を求め、そのあと、図をかいて、面積図の感覚で解きましょう。
82・2
水の体積が分からない問題は、水の移動を考えます。
図のかき方が少々異なりますので、使い分けるようにしましょう。
(1)は水の体積が分からずに水の移動で解き、そこでようやく水の体積が分かり、(2)以降は水の体積を使って解くという一般的な流れを身につけましょう。
82・3
棒を途中まで入れる問題です。
水の体積を求め、真正面から見た図をかいて、面積図のように解いていきます。
水の体積を求められたら、一安心という気持ちになると良いのですが。
棒を抜く問題もここで扱いますが、棒を入れるのも抜くのも、解く際には同じようなものです。
水の体積が分かるときは、移動は極力使わないことが、この単元をマスターするポイントだと思います。
82・4
向きを変えて入れる問題は、「水の体積と水中のおもりの体積の和」を底面積で割ると、水面の高さになることを利用して、底面積を求めていきます。
表のように整えてかいて、体積の差と高さの差を考えるようにします。
82・5
直方体のおもりを入れ、直方体が完全に沈まない場合は、真正面から見た図をかくと、水の形が綺麗な長方形になります。
長方形を生かして、水の底面積と、水面の高さが逆比になることを利用して考えます。
そのためには、図を並べてかくことが大切です。
練習問題
番号 | 難 | 要 | 講評 |
1 | A | 水の体積を求め、図をかいて解きます。 | |
2 | A | 1番の類題です。 | |
3 | B | テ | 水の体積を求め、図をかいて解きます。溢れる寸前のときの棒の本数を小数で求め、それを切り上げます。 |
4 | B | ゼ | (1)では水の移動を考えて求めますが、水の体積が分かったら、改めて水の体積を使って解いていきます。 |
5 | B | テ | (1)は、おもりがすべて沈むので、おもり3個分の体積の水を入れたと考えます。(2)は棒が水上に出ている図をかいて考えます。 |
6 | C | ヒ | 1本目を入れると、水面から円柱は出て、2本目を入れると、すべて沈み、3本目を入れると、水そうから水があふれます。それぞれ状態が異なりますので、それぞれ図をかいて考えます。 |
7 | A | 水面が容器の上の縁ちょうどにある図をかき、面積図のように解きます。 | |
8 | B | ヒ | 展開図などで、木材Bが何㎝入っているかを求めます。そのあとは面積図のように解けます。 |
9 | B | テ | 水の体積を求め、図をかいて解きます。 |
10 | C | ゼ | 2つの容器の「水の体積+水中のおもりの体積」の差を考えます。これを高さの差で割ると、底面積が求められます。 |
11 | C | テ | 10番の類題です。 |
12 | C | テ | 10・11番の類題です。図3は確実に沈むことが分かるので、案外、簡単だと思います。 |
13 | B | テ | 2つの図をかいて、水の量が等しいことから、水の底面積と水面の高さが逆比になることを利用します。 |
14 | C | テ | AとCを見くらべて、逆比を利用して、水の底面積の比を求めます。 |
15 | D | テ | 3つ入っている図、2つ入っている図を並べてかいて、逆比を利用して、水の底面積の比を求めます。底面積を、比を実際の数値だとして使って水の体積を求めていくと、(2)まで求められます。 |
※「難」は難度は以下の基準です。
A:確実に解けるようにしたい問題
B:サピックス偏差値50以上を目指す人向けの問題
C:サピックス偏差値60以上を目指す人向けの問題
D:特に難しい問題
※「要」は重要度で以下の基準です(B・C・Dのみ表記)。
ゼ:絶対に解けるようにしたい重要な問題
テ:よく出る典型題
ヒ:捻りのある問題
サ:地道な作業が必要な問題